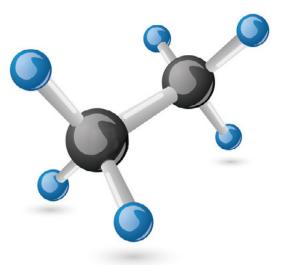
OTTB & goEthane, inc. Ethane

Low carbon, Low cost, High-performance Transportation Fuel

3-5 July 2017 Prepared for PLEA 2017 Kimberly King Project Engineer Out Think The Box (OTTB) Email: kimgerly@outhinkthebox.net Mobile: +1 415 832 9084


Lindsay Leveen

Chairman GoEthane, Inc. Email: lleveen@gmail.com Mobile: +1 415 336 5508

Danilo Gardi

CEO GoEthane, Inc. Email: dany@ensidaenergy.com Mobile: +1 772-600-4423

Recommended Citation PLEA 2017 | Ethane: Low carbon, low cost, high performance transportation fuel

OTTB & goEthane, inc.

Contact: Kimberly King, Out Think the Box (OTTB) +1 415 832 9084 kimgerly@outthinkthebox.net

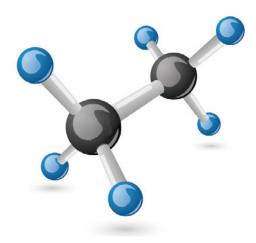
Lindsay Leveen, Chairman, GoEthane, Inc. +1 415 336 5508 Ileveen@gmail.com

Danilo Gardi, CEO, GoEthane, Inc., Ensida Energy +1 772 600 4423 dany@ensidaenergy.com

Document number 02-2017, Out Think The Box (OTTB), Oakland, CA, USA; GoEthane, Inc., Stuart, FL, USA 3-5 July 2017

Copyright © 2015-2017, Out Think The Box (OTTB), Kimberly King; GoEthane, Inc., Lindsay Leveen, Danilo Gardi, and Ensida Energy. The information contained in this document is the exclusive, confidential and proprietary property of Out Think The Box (OTTB), Kimberly King, and GoEthane, Inc., Lindsay Leveen, and Danilo Gardi, and Ensida Energy is protected under the trade secret and copyright laws of the U.S. and other international laws, treaties and conventions. No part of this work may be disclosed to any third party or used, reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without first receiving expressed written permission of Kimberly King, Lindsay Leveen, or Danilo Gardi. Except as otherwise noted, all trademarks appearing here are herein proprietary to Kimberly King, Lindsay Leveen and Danilo Gardi.

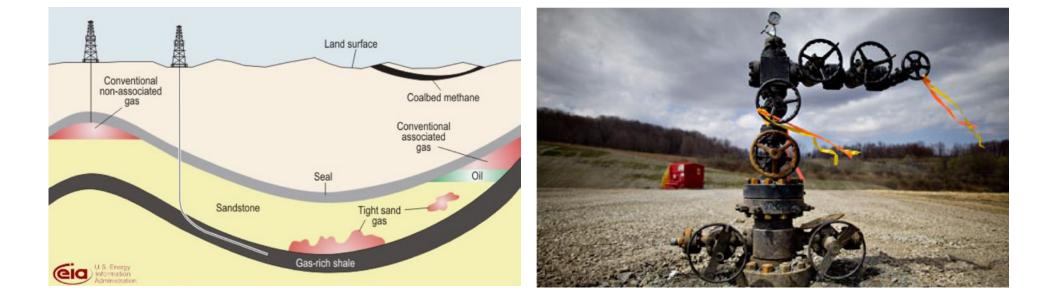
what is ethane (C_2H_6) ?


What is Ethane?

- Chemically stable hydrocarbon
- Liquifies when compressed
- Combustion products $CO_2(g), H_2O(I)$
- 1° use plastics manufacture (ethylene)
- Operates @ lower pressure than CNG

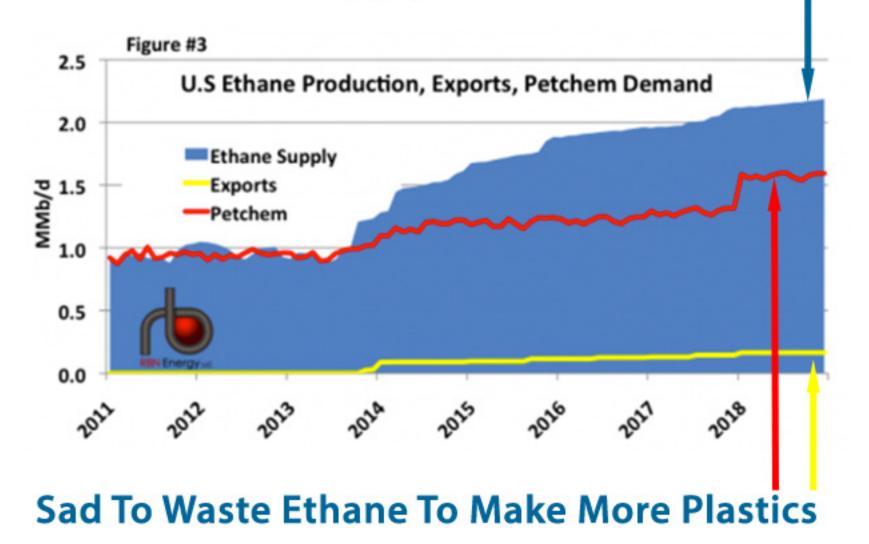
• Less CO₂/mile than gasoline (cleaner)

• Residence time in the troposphere:


- C_2H_6 (78 days)⁽¹⁾(greener)
- CH₄ (~10 years)
- CO_2 (100s of years)

where is ethane (C_2H_6) ? 4

Where does Ethane come from?

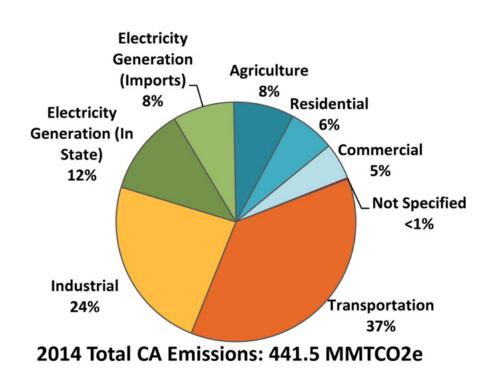

- Shale gas deposits in the USA (largest worldwide)
- Oil refineries (off-gas, re-injected, used in boilers)
- Natural Gas well heads (unprocessed)

where is C₂H₆? (cont'd)

Ethane Supply Far Exceeds Demand

5

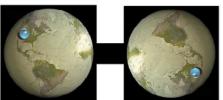
ethane business model


Ethane's Future

- USA Ethane surplus ~500,000 bbl/day next 10+ yrs
- 1.6 bbl ethane == 1 bbl gasoline ~300,000 bbl/day
 GGE (Gasoline Gallon Equivalent) to market
- Petrochemical manufacturing:
 - Uses all the Ethane consumed today
 - Going forward Cannot grow to consume all the Ethane to be produced
- Exports of Ethane may come about—will not bring demand into balance with supply

oct 2013 | ca sb 43 story 7

CA SB 43 Community Self-Generation Initiative


- CPUC, PG&E green tariff, customer generated programs, shared REs
 - EVs
 - NG Vehicles
- PG&E's biggest
- customers
 - BART
 - Chevron

who is behind this idea?

Lindsay Leveen, The Green Machine

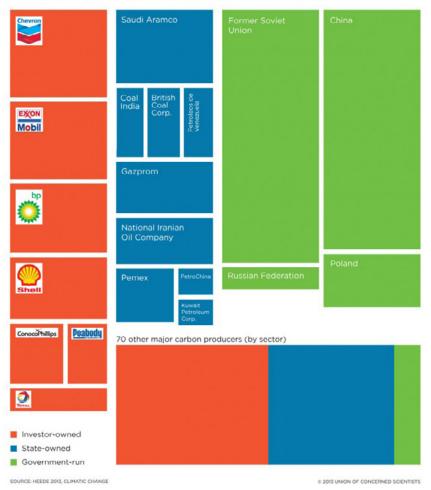
- Thermodynamics expert
 - Chemical Engineer
 - "Frighteningly Bright"
- Industry Consultant & Strategist
 - L'Air Liquide
 - Air Products
- Award Winning Journalist
 - Web site I Greenexplored.com
 - Textbook | Hydrogen—Hope or Hype: A Primer on Energy and Sustainability

public perception

9

Richmond, CA, USA

- Chevron refinery relationship with the city
 - Long standing history of accidents, spills, releases, etc.
 - Uses wealth to assert agenda
 - Situated in a marginalized, underrepresented community
- CA SB 43 presented an opportunity to:
 - Green image -> convert CNG fleet to ethane
 - Reduce CO₂ emissions
 - Avoid cost handouts via SB 43 offerings
 - Improve community relations


chevron 'punted' (12/2013) 10

A recent report by the UCS cited nearly 2/3rds of all industrial carbon pollution in the last 150 years can be traced to 90 global actors.

Citation: Who Is Responsible for Climate Change? New Study Identifies the Top 90 Producers of Industrial Carbon Emissions, http://tinyurl.com/lys3orc

Major Industrial Carbon Producers

Nearly two-thirds, 63 percent, of industrial carbon dioxide and methane released into the atmosphere from 1854–2010 can be traced to fossil fuel and cement production by just 90 entities. The top 20 entities, shown here, produced 48 percent of all industrial carbon pollution, with 15 percent produced by another 70 entities.

enter nucor steel corp. 11

KEEPING AMERICA BEAUTIFUL FOR OVER 45 YEARS WE'RE NORTH AMERICA'S LARGEST RECYCLER.

DIVISION SITES >

NUCOR CORPORATION

HARRIS STEEL

DAVID J. JOSEPH.

SKYLINE STEEL

nucor pilot ethane truck

1st vehicle in the world to run on Ethane

12

Collaborators: Nucor, IMEGA Int'l USA, & COLLANS NB: Imega Int'l USA is now Ensida Energy

why ethane?

13

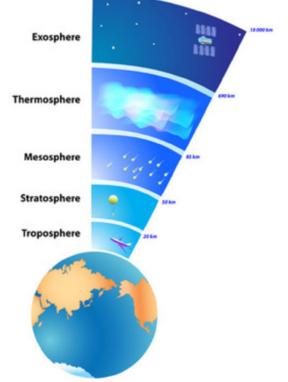
Ethane (C_2H_6) is a great transportation fuel and works well in engines.

- 1st tests: 9%-17%
 in miles/GGE vs Gasoline
- Ethane:
 - High powered fuel, high octane fuel
 - Burns completely in an engine
 - Superior to propane as a transportation fuel
- CNG (Methane):
 - High powered, high octane fuel
 - Does not burn completely in an engine
 - Not a great fuel in ICEs, requires higher activation energy

[VIDEO] imega int'l usa

14

Performance



atmospheric chemistry

Green(er), clean(er) transportation fuel

- Decomposes 'quickly' in the atmosphere compared to $CH_4^{(1)}$
- 100-year indirect global warming potential (GWP)
 - Ethane 5.5
 - Methane 25

(1) Handbook of Atmospheric Science: Principles and Applications, pp.93-97, [Online] - [Cited: 12 October 2015] http://www.scribd.com/doc/23585958/Handbook-of-Atmospheric-sciences.

15

ethane field trial results

Ethane (C_2H_6) is the low CO_2 /mile fuel

- More H_2 rich than Propane (C_3H_8) and Gasoline
- Emits lowest CO₂/mile for the same vehicle, beating:

16

- CNG (Compressed Natural Gas)
- Propane
- Gasoline
- Nucor Steel Ford F150 On-road Test, Jewett, TX:
 - Conducted in the Spring of 2015
 - ~30% lower than gasoline in CO_2 /mile
 - 1.1 lbs/mile vs 1.6 lbs/mile in the same vehicle, same route, same traffic, same speed, same driver

[VIDEO] imega int'l usa 17

Emissions

ethane w2w CO₂ is low

Not needed:

Refining and chemical processing (unlike Gasoline)

18

- Massive energy input for storing (unlike CNG)
 - Ethane @ 600 psi
 - CNG (Compressed Natural Gas) @ 3,500 psi
- Massive energy to liquefy (unlike LNG)
 - Ethane is a liquid at room temperature and 600 psi
 - LNG (Liquified Natural Gas) is cryogenic

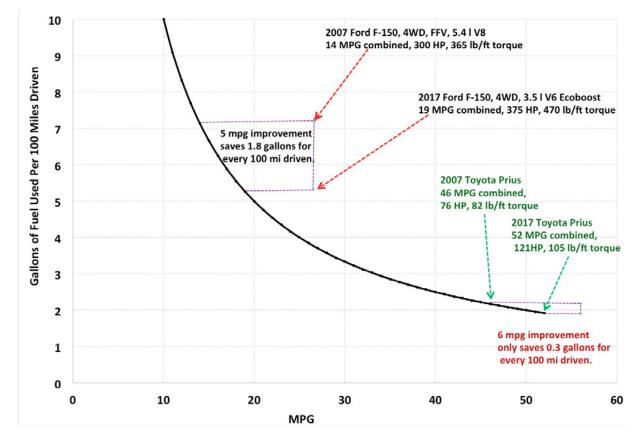
Simply needs:

• Fractionation from Natural Gas (like Propane)

why implement ethane?

19

1/2 the price of propane, more hydrogen, less carbon/BTU


million Btu)*					
	CO2	CH,	N ₂ O	TOTAL CO₂ EQUIVALENT	
ETHANOL (E85)	-14,409	113	41.0	-387	
NATURAL GAS	6,995	317	1.34	16,228	Ethane
PROPANE	12,867	188	0.26	18,204	Luiane
GASOLINE	16,010	118	3.95	20,368	
COMPRESSED NATURAL GAS	10,985	324	1.40	20,429	
DIESEL	18,727	118	0.31	22,104	
FUEL OIL	18,727	118	0.31	22,104	
ELECTRICITY	182,897	317	2.84	192,523	

*End-use emissions are based on the lower heating value, density, and weight ratio of carbon atoms per unit volume of each fuel provided in the GREET model software. All carbon is assumed to be released as CO...

Table 2. Upstream Emissions Factors (grams per

why implement ethane? 20

Thirstier vehicles offer the highest return on fuel efficiency investment ²

(2) G. Collins, Seeking Scalable, Cost-effective Reductions in Gasoline Demand and Tailpipe Emissions? Focus on Pickup Trucks, Not Priuses, Rice University's Baker Institute for Public Policy, Policy Brief, 14 June 2017

how to implement ethane 21

Challenges for implementing ethane as a transportation fuel

- Infrastructure and Logistics
 - Onboard storage cylinders [PRELIMINARY TEST DONE]
 - Delivery infrastructure
 - Supply chain
 - Identify refueling stations locations

next steps

22

Secure funding for on-road testing in California

- Prove viability of ethane vehicle requirements e.g.
 - Honda CNG Civics fueled with Ethane to prove improvement over CNG
 - Side-by-side test of UPS 'Bread Truck' on Ethane vs Gasoline
 - Dual-fuel with Diesel in:
 - Large trucks
 - Locomotives
 - Ferries
- Provide infrastructure to fuel vehicles

parting thoughts

23

Compressed Ethane (C_2H_6) has the largest value add w/the least capital intensity, and it:

- Is more than twice as effective as CNG.
- Is almost as energy dense as gasoline/petrol.
- Is a GHG emissions game-changer.
- Has an upstream carbon footprint similar to Propane, and lower than Gasoline, CNG, and LNG.
- Better use—alternative transportation fuel throughout the USA vs. sending offshore (plastics manufacturing)

